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Solitons in spiral polymeric macromolecules
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The problem of the existence and stability of dynamical soliton regimes in a helix polymer is solved
numerically. For the polytetrafluoroethylene macromolecule, within a model in which deformations of the
valence and torsion angles and the valence bonds are taken into account, two types of soliton solutions are
found. The first type describes the propagation of a solitary wave of torsional displacements of a helix chain.
The twisting of the chain is a result of the compression of dihedral~torsion! angles. The second type describes
the propagation of a solitary wave of longitudinal displacements of a helix chain. The longitudinal compression
of the chain is a result of the compression of the valence angles and bonds. The solitons have a finite narrow
spectrum of supersonic velocities: the soliton of torsion has a spectrum above the velocity of long-wavelength
phonons of torsion while the spectrum of the solitons of compression lies above the velocity of long-
wavelength phonons of longitudinal displacement. Numerical simulations of the soliton dynamics show their
stability in the intervals of admissible velocities. The elasticity of soliton interactions under their collisions is
demonstrated. The formation of solitons induced by deformation of end bonds of the helix chain has been
modeled. It is shown that helicity of the macromolecule is the necessary condition for existence of torsional
solitons.

PACS number~s!: 42.65.Tg, 63.20.Ry, 63.20.Pw
cu
s
t

en
it

di

ni
a
n

th
n

ita

th
a

st
d
in
a
cu
nt
f v

o

ol-
the
s-

of
te is
ore
f a
f a

ee-
rk

iral
in
ed

ent
lo-

rst
e-
ic

of
eri-

-
igh
zed
on
ted
lix

of
I. INTRODUCTION

The development of modern nonlinear physics has led
discovery of solitonic mechanisms determining at a mole
lar level the elementary events of many physical processe
crystals and other ordered molecular systems. Today,
role of supersonic solitons, ensuring the most effici
mechanism of energy transport in molecular systems w
quasi-one-dimensional structure, is quite clear@1–4#. A su-
personic soliton~nonlinear solitary wave! in such systems
usually presents a moving molecular local field of longitu
nal deformation~for instance, ana-helix molecule of a pro-
tein @5–7#!.

From the very beginning@8–11# until now the basic
model for studying nonlinear dynamics is an anharmo
one-dimensional lattice. However, real molecular chains
three dimensional and it is necessary to take account of
only longitudinal but also transverse displacements of
chain. Numerical modeling of the soliton dynamics in no
linear networks has shown a high sensitivity of the exc
tions to the transverse perturbations@12,13#.

The ground state of a molecular chain in space is
three-dimensional helix. A model of the helix chain as
natural generalization of the one-dimensional Fermi-Pa
Ulam model was studied in Ref.@7#. The authors suppose
that the structure of the helix was stabilized by the pair
teractions of three nearest-neighbor molecules of the ch
The modeling of the nonlinear dynamics of concrete mole
lar chains requires using more realistic potentials taking i
account the strain of valence bonds and the changes o
lence and conformational angles.

To the present time the macromolecule polyethylene~PE!
(CH2u)x has been the most investigated in the class
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polymeric macromolecules@14–19#, each segment of which
consists of one carbon atom. The ground state of this m
ecule is the plane zigzag conformation corresponding to
1*2/1 spiral. The regularity of the zigzag chain leads to e
sential peculiarities of its dynamics, but for the majority
macromolecules of the class considered the ground sta
not a plane zigzag, but a three-dimensional helix. Theref
it is also interesting to consider the nonlinear dynamics o
macromolecule having in the ground state the shape o
three-dimensional spiral.

The macromolecule polytetrafluoethylene~PTFE!
(CF2u)x in the ground state has the shape of a thr
dimensional 1*13/6 spiral. The objective of the present wo
is to study the solitary waves dynamics in an isolated sp
macromolecule. It will be shown that the helicity of the cha
leads to the existence of a specific type of localiz
excitations—supersonic solitons,~solitary waves! of torsion.
Thus, in a spiral macromolecule there can be two differ
types of supersonic solitons providing the propagation of
calized longitudinal and torsion strains of a spiral~in contrast
to a plane zigzag, where only supersonic solitons of the fi
type can exist!. For the molecule PTFE the spectrum of v
locities of supersonic solitons is found and their dynam
properties are investigated.

The importance of the study of the nonlinear dynamics
helix chains is connected also with the appearance of exp
mental work in this field@20#. It is clear now that experimen
tal data related to the behavior of crystalline PTFE at h
temperatures can be explained by the formation of locali
solitonlike torsional excitations. So the significant questi
arises as to whether localized torsional excitations stipula
by intramolecular interactions can exist in an isolated he
chain. An alternative possibility is the dominating role
7065 ©2000 The American Physical Society
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intermolecular interactions in this connection~similarly to
the case of crystalline PE!.

II. THE MODEL

The molecule PTFE in the crystalline state has a sp
conformation 1*13/6 with lattice periodsa5b50.559 nm,
c51.688 nm @21#. We accept further the approach
‘‘united atoms’’ ~i.e., we consider the CF2 group as a single
particle with massM550mp , wheremp is the mass of a
proton!.

Let us consider a chain of PTFE. Then in the equilibriu
state thenth site of the chain will be described by a positio
vector

R5„R0 cos~nDf!,R0 sin~nDf!,nDf…, ~1!

whereR0 is the radius,Df512p/135166.15° the angular
step, andDz5c/1350.1298 nm the longitudinal step of th
spiral.

The length of the valence bond C—Cr050.1533 nm. It
follows from the formula~1! that the squared length of th
valence bond is

r0
25uRn112Rnu52R0

2@12cos~Df!#1Dz2,

so that the spiral radius

R05A~r0
22Dz2!/2@12cos~Df!#50.410 Å .

In the equilibrium state the valence angle/CCC has the
value

u05arccos@2~en21 ,en!/ro
2#,

where the vectoren5Rn112Rn has the direction of thenth
valence bond. After transformations we obtain

u05p2arccos$@4R0
2 sin2~Df/2!cosDf1Dz2#/r0

2%

5116.30°.

The equilibrium value of the dihedral~torsional! angle is

hn5arccos@~vn21 ,vn!/uvn21uuvnu#

5arccosS h2 cosDf1sin2 Df

h21sin2 Df
D ,

wherevn5@en ,en11# is the cross product of vectorsen ,en11
and h5Dz/R0 is the dimensionless longitudinal step of th
spiral. Further, we use the angle of rotation around thenth
valence bonddn5p2hn wherehn is thenth dihedral angle.
In the equilibrium state the angle of rotation is

d05p2h0516.32°.

Let xn , yn , andzn be the coordinates of thenth united
atom of the helix backbone. After transformation from t
Cartesian frame to the cylindrical one,

xn5~R01r n!cos~nDf1wn!,

yn5~R01r n!sin~nDf1wn!,
l

zn5nDz1hn

(r n is the transverse,wn the angular, andhn the longitudinal
displacement of thenth site of the chain from the equilib
rium state!, the Hamiltonian of the chain looks like

H5(
n

$ 1
2 M @ ṙ n

21ẇn
2~R01r n!21ḣn

2#

1V~rn!1U~un!1W~dn!%, ~2!

where the overdot denotes the derivative with respect to t
t, rn is the length of thenth valence bond, andun anddn are
the nth valence and rotational angles, respectively.

The potential of a valence bond is given by

V~rn!5D0$12exp@2a~rn2r0!#%2,

where the length of thenth bond is

rn5@an,11bn
2#1/2.

Here,

an,15dn
21dn11

2 22dndn11cn,1 ,

bn5Dz1hn112hn ,

dn5R01r n ,

cn,15cos~Df1wn112wn!.

The energy of a valence bond isD05334.72 kJ/mol and the
parametera519.1 nm21 @22#.

The energy of a valence angle is

U~un!5 1
2 Ku@cos~un!2cos~u0!#2,

where the value of thenth valence angle

un5arccos@2~an,21bn21bn!/rn21rn#.

Here,

an,25dn21dncn21,11dndn11cn,12dn
22dn21dn11cn,2 ,

cn,25cos~2Df1wn112wn21!.

According to@18#, the energyKu5529 kJ/mol.
The potential of an internal rotationW(dn) characterizes

the deformation caused by the rotation around thenth va-
lence bond. The value of thenth rotational angle is

dn5arccos@2~bnbn11an,21bn21bnan11,22bn
2an,4

2bn21bn11an,11an,3an11,3!/Abnbn11#,

where

an,35dn21dnsn21,11dndn11sn,12dn21dn11sn,2 ,

an,45dndn12cn11,22dndn11cn,12dn21dn12cn,3

1dn21dn11cn,2 ,

sn,15sin~Df1wn112wn!,
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sn,25sin~2Df1wn112wn21!,

cn,35cos~3Df1wn122wn21!,

bn5an21,1bn
21an,1bn21

2 22an,2bn21bn1an,3
2 .

The expression~2! is also the Hamiltonian for a zigzag P
chain. It is possible to take the massM514mp , the valence
angle u05113°, and the rotational~conformational! angle
d050 @the spiral has radiusR05r0 cos(u0/2)/2542.3 pm,
longitudinal stepDz5r0 sin(u0/2)50.1278 nm, and angula
stepDf5p].

III. POTENTIAL OF INTERNAL ROTATION

The potential of the internal rotation for the macromo
ecule PE is shown in Fig. 1. An absolute minimum of t
potentiald050 corresponds to thetrans conformation, and
the other two minima togaucheconformations. The potentia
is characterized by three characteristics: the height of
potential barrier betweentrans and gaucheconformations,
the second minimum of the potentiale25U(2p/3) corre-
sponding to the energy of agaucheconformation, and the
maximal valuee35U(p) related to the energy level of th
shadowed conformation. In accordance with@21# e1514.94
kJ/mol, e252.0768 kJ/mol, ande3522.6 kJ/mol.

For numerical modeling of the dynamics of the mac
molecule PE it is convenient to present the interaction po
tial by

W1~d!5C1sin2~d/2!1C2Zb~d!, ~3!

where the one-parametric potential

Zb~d!5F ~11b!sin~3d/2!

12b sin~3d/2! G2

describes a non-negative function of the period 4p/3, having
minima at the pointsd50, 2p/3 @Zb(0)5Zb(2p/3)50#
and maxima at the pointsd5p/3, p „Zb(p/3)5@(1
1b)/(12b)#2, Zb(p)51…. The parameterubu,1 deter-
mines the relation of the barrier heights between the poten
minima ~3!.

The values of the parametersC1 , C2, andb of the poten-
tial of rotation ~3! are uniquely determined by the equatio

FIG. 1. Potential of rotation around the valence bond C—
W(d) for macromolecules PTFE~curve 1! and PE~curve 2!.
e
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W1~p/3!5C1/41C2@~11b!/~12b!#25e1 ,

W1~2p/3!53C1/45e2 ,

W1~p!5C11C25e3 ,

from which we haveC154e2/352.7679 kJ/mol,C25e3

2c1519.8338 kJ/mol, b5(Ad21)/(Ad11)520.0825,
whered5(e12c1/4)/c2. The potential~3! with the indicated
values of the parameters is given in Fig. 1.

The potential of interaction for the macromolecule PTF
is also presented in Fig. 1. The difference between th
potentials is connected with the polarity of the bond C—
The other reason is that the van der Vaals radius of a fluo
atom is larger than the radius of a hydrogen atom. All t
leads to additional contributions to the total potential ene
of rotation compared with PE. Having three rotary isome
on each bond C—C, one with the minimal energy(trans)and
two with higher energies@gauche (1) and gauche
(2)], PTFE has four isomers. Two of them@trans (1) and
trans (2)] have identical minimal energy@d15d0 , d2
52p2d0 , W(d1)5W(d2)50]; the other two @gauche
(1) andgauche(2)] have higher energies@d3'2p/3, d4
'4p/3, W(d3)5W(d4).0].

The potential of rotation is characterized by four chara
teristics: the height of the potential barriers between b
trans conformations e05W(0), and between trans and
gaucheconformationse15W(p/3), the level of thegauche
conformation energye25W(2p/3), and the height of the
barrier betweengaucheconformationse35W(p). Accord-
ing to @21#, e051.674 kJ/mol,e1518.42 kJ/mol,e254.186
kJ/mol, ande3523.02 kJ/mol.

For numerical modeling of the dynamics of the macr
molecule PTFE it is convenient to present the potential
interaction by the formula

W2~d!5@C3Za~d!1C4Zb~d!2C5#2, ~4!

where the one-parametric function

Za~d!5
~11a!sin2~d/2!

11a sin2~d/2!
.

The parameter valuesC353.411 (kJ/mol)1/2, C452.681
(kJ/mol)1/2, C551.294 (kJ/mol)1/2, a514.6125, andb
54.002831023 are determined from the equations

W~0!5C5
25e0 ,

W~d0!5@C3Za~d0!1C4Zb~d0!2C5#250,

W~p/3!5FC3

11a

41a
1C4S 11b

12b D 2

2C5G2

5e1 ,

W~2p/3!5F3C3

11a

413a
2C5G2

5e2 ,

W~p!5~C31C42C5!25e3 .

The potential~4! at given parameter values is presented
Fig. 1. It has an absolute minimum atd5d0 , 2p2d0.
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Let us note that the potential of rotationW(d) for PE is
symmetric with respect to the point of the absolute minim
d050. The cubic anharmonicity of the potential at this po
is equal to zero. For PTFE the point of the minimumd0 is
not a point of symmetry. The cubic anharmonicity at th
point is different from zero. By virtue of this, for PTFE it i
possible to expect the existence of solitons of torsion sti
lated by cubic anharmonicity of the rotational potential.

IV. A DISPERSION EQUATION

For the macromolecule PE the dispersion equation in
plane case was obtained by Kirkwood@23# more than 60
years ago. The dispersion equation for the out-of-plane
namics was presented in@17#. The velocity of long-wave
~longitudinal! acoustic phonons

v l52AK2 /M tan~u0/2!/A114« tan~u0/2!,

where the dimensionless parameter«5K2 /K1r0
2; K1

52D0a2 is the stiffness of a valence bond andK2
5g sin2 u0 is the stiffness of a valence angle.

The velocity of long-wave torsional phonons

v t54dzAK3 /M ,

where the stiffness coefficientK35W19(0)r0 /(4R0dz)2.
Let us find the dispersion equation for the PTFE mac

molecule. It is convenient for the analysis of low-amplitu
oscillations of a helix chain to pass from the cylindrical c
ordinatesr n , wn , andhn to the local coordinates

un5S un,1

un,2

un,3

D 5S cos~nDf! sin~nDf! 0

2sin~nDf! cos~nDf! 0

0 0 1
D

3S ~R01r n!cos~nDf1wn!2R0 cos~nDf!

~R01r n!sin~nDf1wn!2R0 sin~nDf!

hn

D .

In the given coordinate frame the Hamiltonian~2! has the
form

H5(
n

$ 1
2 M ~ u̇n ,u̇n!1V~un ,un11!1U~un21 ,un ,un11!

1W~un21 ,un ,un11 ,un12!%. ~5!

The following equations of motion correspond to t
Hamiltonian~5!:

2M ün5V1~un ,un11!1V2~un21 ,un!1U1~un ,un11 ,un12!

1U2~un21 ,un ,un11!1U3~un22 ,un21 ,un!

1W1~un ,un11 ,un12 ,un13!

1W2~un21 ,un ,un11 ,un12!

1W3~un22 ,un21 ,un ,un11!

1W4~un23 ,un22 ,un21 ,un!, ~6!
t

-

e

y-

-

where the vectors

V i~u1 ,u2!5
]

]ui
V, i 51,2;

Ui~u1 ,u2 ,u3!5
]

]ui
U, i 51,2,3;

W i~u1 ,u2 ,u3 ,u4!5
]

]ui
W, i 51,2,3,4.

The linear approach to the nonlinear equations~6! takes
the form

2M ün5B1un1B2~un211un11!1B3~un221un12!

1B4~un231un13!, ~7!

where the constants of the matrices are determined by
relations

B15V111V221U111U221U331W111W221W331W44,

B25V121U121U231W121W231W34,

B35U131W131W24,

B45W14.

Here,

Vi j 5
]2V

]ui ]uj
~0,0!, i , j 51,2;

Ui j 5
]2U

]ui ]uj
~0,0,0!, i , j 51,2,3;

Wi j 5
]2W

]ui ]uj
~0,0,0,0!, i , j 51,2,3,4.

Let us look for the solution of the linear system~7! in the
form of the harmonic wave

un5A exp@ i ~qn2vt !#. ~8!

After the substitution of the expression~8! into the linear
equation~7! we obtain the dispersion equation

uB112 cos~q!B212 cos~2q!B312 cos~3q!B42v2Eu50,
~9!

whereE is the unit matrix.
The dispersion equation~9! is an algebraic equation of th

third order with respect to the variablev2. The correspond-
ing algebraic curve has three branches: two acousticv
5v t(q), v5v l(q) and one opticalv5vo(q) @v t(q)
<v l(q)<vo(q)#. The dispersion curves are given in Fig.
The lower curvev5v t(q) gives the dispersion law fo
acoustic phonons corresponding to torsional oscillations,
the medial curvev5v l(q) the dispersion law for acousti
phonons corresponding to longitudinal oscillations of the
lix. The upper curve v5vo(q) corresponds to high-
frequency optical phonons of the helix.
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The velocity of long-wave longitudinal phonons

v l5Dz lim
q→0

v l~q!

q
56978.6 m/s

exceeds the velocity of torsional phonons

v t5Dz lim
q→0

v t~q!

q
55585.3 m/s.

The ratio of the velocities isst5v t /v l50.800 35.

V. NUMERICAL METHOD OF FINDING NONLINEAR
SOLITARY WAVES

The equations of motion that correspond to the Ham
tonian ~2! have the form

Mr̈ n2M ~R01r n!ẇn
21

]

]r n
P50,

M ~R01r n!2ẅn12M ~R01r n!ẇnṙ n1
]

]wn
P50, ~10!

Mḧn
21

]

]hn
P50,

where the potential energy

P5(
n

$V~rn!1U~un!1W~dn!%.

The complexity of the equations of motion does not allow
to study them analytically, therefore for the analysis of so
ton solutions we will take advantage of a numerical meth
@7#.

The solution of Eqs.~10! will be searched for as a trave
ing solitary smooth wave of a constant profile. For this p

FIG. 2. The frequency spectrum curvesv5v t(q) ~1!, v
5v l(q) ~2!, andv5vo(q) ~3!, for the spiral isolated macromol
ecule PTFE.
-

s
-
d

-

pose let us assumer n(t)5r (j), wn(t)5w(j), and hn(t)
5h(j), where the wave variablej5nDz2vt, v is the wave
velocity, and the functionsr, w, andh smoothly depend onj.

Using the discrete approximations of time derivatives

ṙ n52v~r n112r n21!/2Dz,

ẇn5v~cn1125cn22cn21!/6Dz,

r̈ n5v2~r n1122r n1r n21!/Dz2,

ẅn52v2~cn11215cn115cn212cn22!/12Dz2,

ḧn52v2~wn11215wn115wn212wn22!/12Dz2,

where the relative rotational displacementcn5wn112wn
and the relative displacementwn5hn112hn , we write the
equations of motion~10! as a system of discrete equations
variablesr n , cn , wn :

F1,n52c1~r n1122r n1r n21!1c2~cn1125cn22cn21!2

3~R01r n!1F1~r n23 , . . . ,r n13 ;cn23 , . . . ,cn22 ;

wn23 , . . . ,wn12!50,

F2,n5c3~cn11215cn115cn212cn22!1c4~r n112r n21!

3~cn1125cn22cn21!/~R01r n!

1F2~r n23 , . . . ,r n13 ;cn23 , . . . ,cn22 ;

wn23 , . . . ,wn12!50, ~11!

FIG. 3. The profiles of the soliton of longitudinal compressi
~componentsr n , wn , hn , curves 1, 2, 3! at velocitys51.02 and the
soliton of torsion~curves 4, 5, 6! at velocitys50.82.
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F3,n5c3~wn11215wn115wn212wn22!

1F3~r n23 , . . . ,r n13 ;cn23 , . . . ,cn22 ;

wn23 , . . . ,wn12!50,

where the coefficientsc15v2/Dz2, c25c1/36, c35c1/12,
andc45c1/6.

We search numerically for soliton solution
$r n ,cn ,wn%n51

N for discrete systems of Eqs.~11! as solutions
of the problem for a conditional minimum,

F5
1

2 (
n52

N21

~F1,n
2 1F2,n

2 1F3,n
2 !→min,

~12!
r 15r N5c15cN5w15wN50.

FIG. 4. Change of length of the valence bondsrn , valence
angleun , and conformational anglesdn in the localization region of
the soliton of compression~curves 1, 2, 3! at velocitys51.02 and
the soliton of torsion~curves 4, 5, 6! at s50.82.
The solution of this problem allows us to find numerically a
soliton solutions~solitary waves of a constant profile! for the
equations of motion~10!. The absence of such solutions
any value ofv means the impossibility of soliton motion a
this value of velocity.

The problem~12! was solved numerically by the metho
of conjugate gradients. The solution was searched for in
chains withN5400 bonds~the given valueN ensures the
independence of the shape of the solution of zero bound
conditions!. The initial point of descent was taken in th
form of three symmetric bell-shaped profilesr (n), c(n), and
w(n) centered at the middle of the chain.

Each soliton solution$r n ,cn ,wn%n51
N is characterized by

the energy

E5 (
n52

N21 S Mv2

8Dz2
@~r n112r n21!21~R01r n!2~cn1cn21!2

1~wn1wn21!2#1V~rn!1U~un!1W~dn!D ,

the total torsion

FIG. 5. Dependence of the energyE ~a!, and widthD ~b! of the
soliton of torsion on the dimensionless velocitys.
TABLE I. Dependence of the energyE, width D, total compressionR, torsionC, and amplitudesAr , Ar ,
Au , Ad of the soliton of torsion on the dimensionless velocitys.

E D R C Ar Ar Au Ad

s ~kJ/mol! ~pm! ~deg! ~pm! ~pm! ~deg! ~deg!

0.8025 0.11 39.9 21.2 211.8 0.03 20.01 20.006 0.32
0.8050 0.37 27.5 21.9 218.5 0.06 20.02 20.017 0.72
0.8075 0.81 22.5 22.6 224.6 0.10 20.03 20.033 1.16
0.8100 1.48 19.7 23.3 231.1 0.14 20.05 20.052 1.65
0.8125 2.51 17.9 24.3 238.6 0.20 20.07 20.080 2.21
0.8150 4.19 16.8 25.6 248.4 0.28 20.10 20.120 2.88
0.8175 7.47 16.3 27.9 264.0 0.38 20.13 20.179 3.77
0.8200 28.61 21.0 220.1 2144.8 0.63 20.21 20.325 5.70
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C5 (
n51

N

cn ,

and the compression of the chain

R5 (
n51

N

wn .

The mean-squared width of the soliton measured in the
riods of the chain is written as

D52F (
n51

N

~n2n̄!wn Y RG1/2

,

wheren̄5(n51
N nwn /R gives the position of the soliton cen

ter. The solution is also characterized by the amplitude
transverse displacements of the bonds of the helix backb
Ar5maxn rn , the amplitudes of the strain of valence bon
Ar5minn(rn2r0), of the valence anglesAu5minn(un2u0),
and of the angles of rotationAd5maxn(dn2d0).

FIG. 6. Dependence of the energyE ~a! and widthD ~b! of the
soliton of compression on the dimensionless velocitys.

TABLE II. Dependence of the energyE, width D, total com-
pressionR, torsionC, and amplitudesAr , Ar , Au , Ad of the soli-
ton of longitudinal compression on the dimensionless velocitys.

E D R C Ar Ar Au Ad

s ~kJ/mol! ~pm! ~deg! ~pm! ~pm! ~deg! ~deg!

1.005 8.8 20.3 244 7.8 0.6 21.0 21.6 20.3
1.010 27.8 15.9 266 11.4 1.3 21.9 23.3 20.5
1.015 55.5 13.6 288 14.5 2.0 22.8 25.1 20.7
1.020 97.2 12.2 2110 17.4 2.8 23.8 27.2 20.9
1.025 158.3 11.32135 20.5 3.8 24.8 29.5 21.1
1.030 252.4 10.82165 24.3 4.9 25.9 212.2 21.3
1.035 418.6 10.62211 29.9 6.2 27.1 215.8 21.5
1.040 941.0 11.52334 44.9 8.5 28.8 221.8 21.7
e-

f
ne

VI. DYNAMIC PROPERTIES OF SOLITONS

Numerical solution of the problem~12! has shown the
existence of soliton solutions of two types. The first soluti
describes the propagation of a torsional solitary wave al
the PTFE chain. The typical form of the solution is presen
in Fig. 3. The displacements of all three componentsr n , wn ,
andhn have the form of a solitary wave. In combination the

FIG. 7. Existence region for acoustic supersonic solitons of t
sion~a! and solitons of compression of thetranszigzag in the space
of dimensionless parametersb ands.

FIG. 8. Collision of solitons of torsion (s50.82) in the helix of
PTFE. The dependence of transversal displacementr n ~a!, relative
rotationcn ~b!, and relative longitudinal displacementwn ~c! on the
number of the bondn and timet. The radiation of phonons with
respect to componentwn can be seen.



o

o
a
f

o
o
ee
y
tu
on

s
th
on

is-

e

n-
the

f

s
of

ty

lix
loc-
ed,
a-

of
ht

he

val

ws
h

en

7072 PRE 61A. V. SAVIN AND L. I. MANEVITCH
describe a localized torsion of the helix. In the region
localization of the soliton on the transverse componentr n the
helix is expanded, on the angular variablewn monotonically
twisted, and on the longitudinal directionhn monotonically
squeezed. As is visible from Fig. 4, all these deformations
the helix are achieved basically by the expense of local m
nification of the rotation anglesdn , i.e., by the expense o
squeezing dihedral angles of a chain.

The second solution describes the propagation of a s
tary wave of longitudinal compression. The form of the s
lution is given in Fig. 3. The displacements of the thr
componentsr n , wn , andhn also have the form of a solitar
wave, but in combination they describe a localized longi
dinal compression of the helix. In the region of localizati
of the soliton on the transverse componentr n the helix is
expanded, on the angular variablewn slightly untwisted, and
on the longitudinal directionhn squeezed. From Fig. 4 it i
visible that these deformations are reached first of all at
expense of squeezing the valence angles and valence b
Thus the torsional angles are weakly deformed.

The solitons of torsion have the finite interval of perm
sible values of dimensionless velocityst,s,0.820 034,
where the dimensionless velocitys5v/v l . The dependen-
cies of the energyE and widthD of the soliton on the di-
mensionless velocitys are presented in Fig. 5. With th

FIG. 9. Inelastic collision of solitons of torsion (s51.02) in the
helix of PTFE. The radiation of phonons with respect to compon
cn can be seen.
f

f
g-

li-
-
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e
ds.

growth of the velocity, the soliton energy monotonically i
creases and the width monotonically decreases up to
minimum valueD516.3 at s50.818 and then begins to
grow monotonically. Concrete values of the energyE, width
D, total compressionR, torsion of the spiralC, amplitude of
transversal expansion of the chainAr , and extreme values o
strains of valence bondsAr , of valence anglesAu , and of
angles of rotationAd are presented in Table I. As follow
from this table, the amplitude of longitudinal compression
the chain grows monotonically with the growth of veloci
and reaches the maximum value223 pm at the maximum
value of the velocity. The transversal expansion of the he
does not reach an essential value. At all values of the ve
ity the valence bonds and the angles are almost undeform
as against the angles of rotation. The amplitude of deform
tion of torsion angles monotonically grows with growth
velocity. The maximum deformation happens on the rig
end of the interval of velocities, where the total torsion of t
helix C52163.5°.

The solitons of compression of the helix have an inter
of permissible values of dimensionless velocity 1,s,1.04.
The dependencies of energyE and widthD of the soliton on
s are presented in Fig. 6. The energy of the soliton gro
monotonically with growth of the velocity and the widt
monotonically decreases up to the minimum valueD

t
FIG. 10. Collision of the soliton of torsion (s50.82) with the

solitons of longitudinal compression (s521.01) in the helix of
PTFE.
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510.19 ats51.035 and then begins to grow monotonical
Concrete values of energyE, width D, total compressionR,
and torsion of the helixC, the amplitude of transverse ex
pansion of the chainAr , and extreme values of the strain
valence bondsAr , valence anglesAu , and angles of rotation
Ad are presented in Table II. The amplitude of longitudin
compression of the chain grows monotonically with grow
of the velocity and reaches the maximal value 0.334 nm
the right end of the interval of velocities. The amplitude
transverse expansion can reach the value 8.5 pm, which
ceeds by more than one order of magnitude the maxim
value of expansion of the helix for a soliton of torsion. Lar
values can also be reached by the strains of the vale
bonds and angles. The dihedral angles thus are weakly
formed. So the tension of a torsion angle at the maxim
value of velocity does not exceed 1.7°.

An analysis of soliton dynamics in a plane zigzag P
chain was made in@16#, in which the lower value of the
maximum energy of strain of a valence angleKu5130.122
kJ/mol @22# was used. It was shown that a soliton of tensi
with a narrow supersonic velocity spectrum can exist in
trans zigzag chain. It is interesting to consider the depe
dence of the solution on the value of the dimensionless
rameter

b5K2 /K1r0
2 ,

FIG. 11. The formation of the soliton of torsion and three wa
packets in the helix macromolecule PTFE at compression of 40
the first dihedral angle; the dependence of the valence anglesun ~a!
and angles of rotationdn ~b! on the number of bondn for time t
5180 ps.
l

n
f
x-

m

ce
e-

e
-
a-

where

K15
d2

dr2
V~r!U

r5r0

52D0a2

is the stiffness of the valence bond and

K25
d2

du2
U~u!U

u5u0

5Ku sin2 u0

the stiffness of the valence angle.
Numerical solution of the problem~12! has shown that

only one type of acoustic soliton, namely, the soliton wa
of longitudinal deformation, can exist in a plane zigz
chain. The type of soliton solution depends on the dim
sional parameterb, which characterizes the relation of phys
cal and geometrical anharmonicity of the zigzag chain. T
physical anharmonicity is caused by the potential of the
lence bond, and the geometrical anharmonicity by the po
tial of the valence angle. At valuesb,0.0356 the geometri-
cal anharmonicity plays the main role by virtue of which t
soliton solution of the equations of motion corresponds t
solitary wave of tension in the plane zigzag. Atb.0.0356
the physical anharmonicity will be greater, by virtue
which the soliton solution already corresponds to a solit
wave of compression.

of

FIG. 12. The formation of the soliton of torsion, the soliton
longitudinal compression, and three wave packets in the helix m
romolecule PTFE at compression of 40° of the first valence an
~time t5170 ps!.
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The dependence of the interval of soliton velocities on
parameterb is presented in Fig. 7. Ifb,b050.0356, the
soliton is a solitary wave of tension, and whenb.b0 a
solitary wave of compression. In chains withb50 ~the ap-
proximation of an infinitely rigid valence bond! the soliton
has the velocity spectrum 1,s,s151.095. With growth of
b, the maximum value of velocitys1 decreases monoton
cally. At the threshold valueb5b0 full compensation of
geometrical and physical anharmonicity occurs and the
locity spectrum disappears (s151). Further growth ofb
leads to monotonic growth of the velocity spectrum.

At the value of energyKu5130.122 kJ/mol the dimen
sionless parameterb50.019 29,b0. The soliton corre-
sponds to a solitary wave of tension and has velocity sp
trum 1,s,1.02. At the selected value of the energyKu
5529 kJ/mol the dimensionless parameterb50.078 419
.b0. The soliton corresponds to a solitary wave of compr
sion and has velocity spectrum 1,s,1.035.

VII. NUMERICAL MODELING OF SOLITON DYNAMICS

Modeling of the dynamics of solitons in the chains PE a
PTFE has shown their stability at all permissible values
velocity. The solitons move along a chain with a stationa
value of velocity and maintain their shape.

The collision of solitons is not elastic and can be acco
panied by the radiation of phonons. The solitons of torsion
spiral PTFE interact in practice as elastic particles. Th
collision is accompanied by very weak radiation of longit
dinal phonons only near the maximum value of velocitys
50.82 ~Fig. 8!. The collision of the solitons of longitudina
compression in the spiral is accompanied by the radiation
torsional phonons~Fig. 9!. The collision of the torsional soli-
ton with solitons of compression happens almost without
radiation of phonons~Fig. 10!.

In a finite chain, supersonic solitons can arise only on
ends. We model the formation of a soliton by strain of t
end of the chain. Let us consider the propagation of an in
excitation, given as deformation of the first bond, in the fin
helix chain (N510 000) modeling the PTFE molecule. F
this purpose we integrate numerically the equations of m
tion ~10! with initial strain corresponding to diminution o
the first dihedral angle of the chain ofd1540° and with
strain compression of the first valence angle ofu1540°.

The strain of the first dihedral angle leads to formation
the helix of a torsional soliton, which propagates with t
greatest possible velocitys50.82 ~Fig. 11!. Three wave
packets are also formed in the chain. The first packe
formed by optical phonons, the second by superso
phonons of torsion, and the third by longitudinal superso
phonons. The wave packet of longitudinal superso
phonons moves faster than the soliton. As is visible fr
Fig. 11, the phonons do not affect the dynamics of the
D

-

-

-

f

-
f
r

f

l

-

s
c

-

sional soliton. A soliton having velocity higher than the v
locity of the torsional phonons advanced the wave packe
torsional phonons.

The compression of the first valence angle leads to
formation of two supersonic solitons~Fig. 12!. The soliton of
compression moves with the greatest possible velocits
51.04 ahead of a wave packet of longitudinal superso
phonons. The soliton of torsion moves also with its great
possible velocitys50.82, ahead of a wave packet of to
sional phonons.

Modeling shows that the strain of the end of a spiral m
romolecule can lead to the formation of two types of sup
sonic soliton~torsional and longitudinal compression of th
helix!, having supersonic intervals of velocities. It confirm
the results obtained by the numerical solution of the probl
~12!.

VIII. CONCLUSIONS

The examination of the nonlinear dynamics of PTFE c
ried out allows us to conclude that in an isolated polyme
macromolecule having the shape of a three-dimensional
lix there can simultaneously exist two types of superso
soliton: solitons of torsion and solitons of longitudinal com
pression of the spiral. The solitons of the first type cor
spond to a solitary wave of rotary displacements, and s
tons of the second type to a solitary wave of longitudin
displacements of the bonds. Thus intertwisting of a spira
mainly realized as the compression of the dihedral ang
and longitudinal compression by compression of the vale
angles and bonds. The solitons have finite supersonic in
vals of velocities: the soliton of torsion has velocity high
than long-wave phonons of torsion, and the soliton of co
pression a velocity higher than the velocities of long-wa
longitudinal phonons.

In the plane zigzag macromolecule PE only one type
supersonic soliton, namely, the soliton of longitudinal co
pression of the chain, can exist. This allows us to conclu
that helicity of the polymeric macromolecule is a necess
condition for the existence in it of solitons of torsion caus
by anharmonicity of the potential of interaction.

Both such supersonic solitons are dynamically stable a
possible values of the velocity and have particlelike prop
ties ~inelasticity of their interaction is exhibited only at th
maximal values of the velocity!. Let us note that the study o
torsional solitons in isolated helix chains has to be a
mented by investigation of them in a realistic nonline
model taking into account intermolecular interaction.
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