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Solitons in spiral polymeric macromolecules
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The problem of the existence and stability of dynamical soliton regimes in a helix polymer is solved
numerically. For the polytetrafluoroethylene macromolecule, within a model in which deformations of the
valence and torsion angles and the valence bonds are taken into account, two types of soliton solutions are
found. The first type describes the propagation of a solitary wave of torsional displacements of a helix chain.
The twisting of the chain is a result of the compression of dihe@oasion angles. The second type describes
the propagation of a solitary wave of longitudinal displacements of a helix chain. The longitudinal compression
of the chain is a result of the compression of the valence angles and bonds. The solitons have a finite narrow
spectrum of supersonic velocities: the soliton of torsion has a spectrum above the velocity of long-wavelength
phonons of torsion while the spectrum of the solitons of compression lies above the velocity of long-
wavelength phonons of longitudinal displacement. Numerical simulations of the soliton dynamics show their
stability in the intervals of admissible velocities. The elasticity of soliton interactions under their collisions is
demonstrated. The formation of solitons induced by deformation of end bonds of the helix chain has been
modeled. It is shown that helicity of the macromolecule is the necessary condition for existence of torsional
solitons.

PACS numbds): 42.65.Tg, 63.20.Ry, 63.20.Pw

[. INTRODUCTION polymeric macromoleculgsl4—19, each segment of which
consists of one carbon atom. The ground state of this mol-
The development of modern nonlinear physics has led tecule is the plane zigzag conformation corresponding to the
discovery of solitonic mechanisms determining at a molecud*2/1 spiral. The regularity of the zigzag chain leads to es-
lar level the elementary events of many physical processes isential peculiarities of its dynamics, but for the majority of
crystals and other ordered molecular systems. Today, theacromolecules of the class considered the ground state is
role of supersonic solitons, ensuring the most efficientnot a plane zigzag, but a three-dimensional helix. Therefore
mechanism of energy transport in molecular systems witht is also interesting to consider the nonlinear dynamics of a
quasi-one-dimensional structure, is quite clgbr4]. A su- macromolecule having in the ground state the shape of a
personic soliton(nonlinear solitary wavein such systems three-dimensional spiral.
usually presents a moving molecular local field of longitudi- The macromolecule polytetrafluoethylene(PTFE
nal deformation(for instance, anx-helix molecule of a pro- (CF,—), in the ground state has the shape of a three-
tein [5-7]). dimensional 1*13/6 spiral. The objective of the present work
From the very beginnind8-11] until now the basic is to study the solitary waves dynamics in an isolated spiral
model for studying nonlinear dynamics is an anharmonianacromolecule. It will be shown that the helicity of the chain
one-dimensional lattice. However, real molecular chains aréeads to the existence of a specific type of localized
three dimensional and it is necessary to take account of na&xcitations—supersonic solitonsolitary waves of torsion.
only longitudinal but also transverse displacements of théhus, in a spiral macromolecule there can be two different
chain. Numerical modeling of the soliton dynamics in non-types of supersonic solitons providing the propagation of lo-
linear networks has shown a high sensitivity of the excita-calized longitudinal and torsion strains of a spiiialcontrast
tions to the transverse perturbatidi®,13. to a plane zigzag, where only supersonic solitons of the first
The ground state of a molecular chain in space is thaype can exist For the molecule PTFE the spectrum of ve-
three-dimensional helix. A model of the helix chain as alocities of supersonic solitons is found and their dynamic
natural generalization of the one-dimensional Fermi-Pastgproperties are investigated.
Ulam model was studied in Reff7]. The authors supposed  The importance of the study of the nonlinear dynamics of
that the structure of the helix was stabilized by the pair in-helix chains is connected also with the appearance of experi-
teractions of three nearest-neighbor molecules of the chaimental work in this field20]. It is clear now that experimen-
The modeling of the nonlinear dynamics of concrete molecutal data related to the behavior of crystalline PTFE at high
lar chains requires using more realistic potentials taking intdemperatures can be explained by the formation of localized
account the strain of valence bonds and the changes of vaelitonlike torsional excitations. So the significant question
lence and conformational angles. arises as to whether localized torsional excitations stipulated
To the present time the macromolecule polyethyl@?E by intramolecular interactions can exist in an isolated helix
(CH,—), has been the most investigated in the class othain. An alternative possibility is the dominating role of
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intermolecular interactions in this connectigsimilarly to z,=nAz+h,
the case of crystalline BE
(r,, is the transversep,, the angular, anth, the longitudinal
Il. THE MODEL displacement of thath site of the chain from the equilib-

) ) _ rium statg, the Hamiltonian of the chain looks like
The molecule PTFE in the crystalline state has a spiral

conformation 1*13/6 with lattice perioda=b=0.559 nm,
c=1.688 nm[21]. We accept further the approach of
“united atoms” (i.e., we consider the GFgroup as a single
particle with massM =50m,, wherem, is the mass of a +V(pn) +U(0,)+W(3,)}, 2

roton.
P Le?us consider a chain of PTEE. Then in the equilibriumWhere the overdot denotes the derivative with respect to time
state thenth site of the chain will be described by a position b Pn IS the length of theth valence bond, and, and 5, are
vector the nth valence and rotational angles, respectively.

The potential of a valence bond is given by

V(pn)=Do{1—exd — a(pn—po)1}?,

where the length of thath bond is

H=§ (AM[r2+ @4(Ro+1,)%+h2]

R=(RycognA ¢),Rysin(NA ¢),nA ¢), (1)

whereR, is the radiusA ¢=127/13=166.15° the angular
step, andAz=c/13=0.1298 nm the longitudinal step of the
spiral. —la. ,+b21H2
The length of the valence bond C—3=0.1533 nm. It Pn=[3n1+bal™
follows from the formula(1) that the squared length of the Here,
valence bond is )
2 2 2 an1=dy+dn, 1 —2dydn1Cny,
Po=|Rn+1—Rn|=2Rg[1—codA¢)]+AZ?,
b,=Az+h,,.;—h,,
so that the spiral radius " e
dn: R0+ rn,

Ro=(p2—AZ?)/2[1-cogA$)]=0.410A.

. Cn1=COYA P+ oni1—¢n).
In the equilibrium state the valence angleCCC has the nt nehon

value The energy of a valence bondy=334.72 kJ/mol and the
) parameterr=19.1 nm ! [22].
o= arcco—(e,-1,€,)/pgl, The energy of a valence angle is
where the vectoe,= R, ;—R,, has the direction of thath U(6,)= 1K [cog 6,)—cog 6p)]%

valence bond. After transformations we obtain
where the value of thath valence angle
0= m— arcco$[ 4R3 sir(A ¢/2)cosA ¢+ Az%]/ p3}
6n=arcco$—(an o+ bn_10bn)/pn-1pn]-
=116.30°.
Here,
The equilibrium value of the dihedrélorsiona) angle is )
an,zzdnfldncnfl,l""dndn+1cn,l_dn_dnfldnJrlCn,Zv
7 =arcco$(Vy_1,Vn)/|Vn_1||Vnl]

= + - .
h2 COSA¢+Sin2A¢ Cn,2 COS2A ¢+ @ni1— @n-1)
=arcco h2+sir? A& : According to[18], the energyK ,=529 kJ/mol.

The potential of an internal rotatioW(s,) characterizes
wherev,=[e, e, 1] is the cross product of vectoes,e,,, the deformation caused by the rotation around rtie va-
andh=Az/R, is the dimensionless longitudinal step of the l€nce bond. The value of theth rotational angle is
spiral. Further, we use the angle of rotation aroundritie
valence bond5,= 7— 7, wherey, is thenth dihedral angle.

2
Op=arcco§— (bby 185 2+ bp_1bpans 12— brans

In the equilibrium state the angle of rotation is —b,_ 1By 180 1+ An 580+ 19/VBrBrral,
50: T M= 16.32°. where
Let x,,, yn, andz, be the coordinates of theth united an3=0dn_ 10,8y 11+ dndni1Sn1—dn_ 1001 1802,

atom of the helix backbone. After transformation from the
Cartesian frame to the cylindrical one, an4=0ndn 4 2Cn1 10— Andns 11— 1dn 1 2Cn 3

Xp=(Ro+ry)cognA ¢+ ¢y), +dn71dn+1cn,21

Yn=(Rotry)sin(nA¢+¢n), Sn1=SINA G+ @ni1— @n),
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FIG. 1. Potential of rotation around the valence bond C—C
W( ) for macromolecules PTFEeurve 1 and PE(curve 2.

Sn,ZZSin(ZAd’—i_‘Pn-#l_‘Pn—l)v
Cn,3:COE(3A¢+(Pn+2_(Pn—1)u
= b2+a, b3 ;—2a, b, 1b,+al
Bn anfl,l n an,l n-1 an,2 n—1%n an,3'

The expressiofR) is also the Hamiltonian for a zigzag PE
chain. It is possible to take the mags=14m,,, the valence
angle 6,=113°, and the rotationalconformationgl angle
8p=0 [the spiral has radiu®y=p,cos@y2)/2=42.3 pm,
longitudinal stepAz=pqsin(6y/2)=0.1278 nm, and angular
stepA ¢p=].

I1l. POTENTIAL OF INTERNAL ROTATION

The potential of the internal rotation for the macromol-
ecule PE is shown in Fig. 1. An absolute minimum of the
potential 5,=0 corresponds to th&rans conformation, and
the other two minima tgaucheconformations. The potential
is characterized by three characteristics: the height of th
potential barrier betweetrans and gaucheconformations,
the second minimum of the potentia,=U(2#7/3) corre-
sponding to the energy of gaucheconformation, and the
maximal valuee;=U () related to the energy level of the
shadowed conformation. In accordance Wig] e;=14.94
kJ/mol, e,=2.0768 kJ/mol, and;=22.6 kJ/mol.

For numerical modeling of the dynamics of the macro-
molecule PE it is convenient to present the interaction pote
tial by

W;(8) = CySinP(8/2) + CoZ5( 8), ©)

where the one-parametric potential

(14 B)sin(36/2)]?

26(0)= | T gsin3412)

describes a non-negative function of the perietf3, having
minima at the pointsé=0, 27/3 [Z4(0)=Zz(27/3)=0]
and maxima at the pointss==/3, 7 (Zg(m/3)=[(1
+B)/(1-B)1?% Zz(w)=1). The parametetp|<1 deter-

mines the relation of the barrier heights between the potential

minima (3).
The values of the parametets, C,, andp of the poten-
tial of rotation(3) are uniquely determined by the equations
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Wi(/3)=C/d+Col(1+B)/(1-B)P=e1,
W1(27T/3) :301/4: €r,
Wy(7)=C1+Cr=e€3,

from which we haveC;=4¢,/3=2.7679 kJ/mol,C,= €5

—¢,=19.8338 kJ/mol, B=(/Jd—1)/(Jd+1)=—0.0825,
whered= (e;—c4/4)/c,. The potential3) with the indicated
values of the parameters is given in Fig. 1.

The potential of interaction for the macromolecule PTFE
is also presented in Fig. 1. The difference between these
potentials is connected with the polarity of the bond C—F.
The other reason is that the van der Vaals radius of a fluorine
atom is larger than the radius of a hydrogen atom. All this
leads to additional contributions to the total potential energy
of rotation compared with PE. Having three rotary isomers
on each bond &-C, one with the minimal energ§rans)and
two with higher energies[gauche (+) and gauche
(—)], PTFE has four isomers. Two of theftrans (+) and
trans (—)] have identical minimal energy ;= 6y, &>
=27~ 68y, W(8,)=W(68,)=0]; the other two [gauche
(+) andgauche(—)] have higher energiels;~2/3, 4
~47/3, W(83)=W(5,)>0].

The potential of rotation is characterized by four charac-
teristics: the height of the potential barriers between both
trans conformations e;,=W(0), and between trans and
gaucheconformationse; = W(7/3), the level of thegauche
conformation energy,=W(27/3), and the height of the
barrier betweergaucheconformationse;=W(7). Accord-
ing to [21], eg=1.674 kd/mol,e;=18.42 kJ/mol,e,=4.186
kJ/mol, ande;=23.02 kJ/mol.

For numerical modeling of the dynamics of the macro-
molecule PTFE it is convenient to present the potential of

'glteraction by the formula

Wo(8) =[C3Z,(8) +CaZg( ) —Cs]?, (4)

where the one-parametric function

(1+ a)sir?(8/2)

Z.(8)= .
«(9) 1+ a Siré(8/2)

Mhe parameter value€;=3.411 (kJ/moly2, C,=2.681

(kJ/mol)*?2, Cs=1.294 (kJ/molf?, a=14.6125, andp
=4.0028< 10 2 are determined from the equations

W(0)=C2= ¢,

W(80) =[C3Z(8o) + CaZs( 8o) — C51°=0,

a 1+8\2 2
W(7T/3)= C3m+C4 m —C5 = €1,
+a 2
W(27T/3)= 3C3m—c5 = €y,

W(’7T)=(Cg+ C4_C5)2= €3.

The potential(4) at given parameter values is presented in
Fig. 1. It has an absolute minimum &t 6y, 27— J,.
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Let us note that the potential of rotatiék(5) for PE is  where the vectors
symmetric with respect to the point of the absolute minimum
60=0. The cubic anharmonicity of the potential at this point Vi(Uy,Uy) = iv =12
is equal to zero. For PTFE the point of the minimuizis N TR -
not a point of symmetry. The cubic anharmonicity at this
point is different from zero. By virtue of this, for PTFE it is d :
possible to expect the existence of solitons of torsion stipu- Ui(ug,u,Ug) = ﬁ_uiu’ 1=123;
lated by cubic anharmonicity of the rotational potential.

d )
IV. A DISPERSION EQUATION Wi(ug,Uz,Ug,Ug) = 2-W, - 1=1,2,3.4.

For the macromolecule PE the dispersion equation in the The Jinear approach to the nonlinear equatiodistakes
plane case was obtained by Kirkwo¢a3] more than 60 the form

years ago. The dispersion equation for the out-of-plane dy-
namics was presented [i7]. The velocity of long-wave ~MU,=B1Uy+Bo(Uny_ 1+ Ups 1) +Ba(Up o+ Ups o)
(longitudina) acoustic phonons

+B4(Up-3+Uny3), (7)

=2VK,/Mtan 6,/2)/\1+4¢ tan 6,/2), . .
vl 2 "6o/2) & tan fo/2) where the constants of the matrices are determined by the

where the dimensionless parameter=K2/K1p(2); Ky relations

— 2 H
=2Doa” is the stiffness of a valence bond arid, By =Vy1+ Voot U+ U ot U ga+ Wog+ Wapt Wag+ Wy,
= ysir? 6, is the stiffness of a valence angle.

The velocity of long-wave torsional phonons B,= V1ot Ugot U gt Wyot Wogt Way,,
Ut:4§Z\K3/M, B3=U13+W13+W24,
where the stiffness coefficieit;=W;"(0)po/(4Ry562)2. B,=W,,.

Let us find the dispersion equation for the PTFE macro-
molecule. It is convenient for the analysis of low-amplitude Here,
oscillations of a helix chain to pass from the cylindrical co-

2
ordinatesr,,, ¢,,, andh, to the local coordinates V. = v (0,0), i,j=1.2:
1] &ul auj y i) Ll 14
Un 1 cognA¢) sin(nAg¢) O
2
Up=| Unz| =| —sin(nA¢) cognd¢) 0 uijzéj ;Ju_(O,O,O), i,j=1,2,3;
Ung 0 0 1 PRl
2
(Ro+ry)cognA ¢+ ¢,) — Ry cognA ¢) =———(0,0,00), i,j=1234.
x| (Ro+rp)sin(nA ¢+ g, —RosinnAg) |. I 9,
h, Let us look for the solution of the linear systd) in the

form of the harmonic wave
In the given coordinate frame the Hamiltoni§?) has the

form u,=Aexdi(gn—wt)]. (8)
o After the substitution of the expressidB) into the linear
H=2 {3M(Up,Up)+V(Up,Uns 1) +U(Un_1,Up,Uns 1) equation(7) we obtain the dispersion equation
n
_2E =
FW(U, 1, Un s Uns g0Uns o)) 5) |B;+2co$q)B,+2 co$2q)B;+2 cog3q)B,— w’E| ?9)

The following equations of motion correspond to the

. - wherekE is the unit matrix.
Hamiltonian(5):

The dispersion equatia®) is an algebraic equation of the

. third order with respect to the variable?. The correspond-

—Mu,=Vy(Up,Uns1) +Va(Uy—1,Up) +Us(Un Unt1,Uns2)  ing algebraic curve has three branches: two acoustic

=w(q), w=w/(q) and one opticalw=wy(q) [w(q)

< w(q)<wy(q)]. The dispersion curves are given in Fig. 2.

+W1(Up,Ups1,Unso,Unyz) The lower curvew=w(q) gives the dispersion law for
acoustic phonons corresponding to torsional oscillations, and

+Wo(Un-1,Un,Uns1,Un+2) the medial curvew= w,(q) the dispersion law for acoustic
phonons corresponding to longitudinal oscillations of the he-

FWalUn-2.Un-1.Un  Un+2) lix. The upper curve w=wy(q) corresponds to high-

+W,4(Up—3,Up—2,Un_1,Up), (6) frequency optical phonons of the helix.

+ Uz(un—laun ,Un+1)+ US(un—Zaun—laun)
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FIG. 2. The frequency spectrum curves=w(q) (1),
=w(q) (2), and w=wy(q) (3), for the spiral isolated macromol-
ecule PTFE.

The velocity of long-wave longitudinal phonons

o= azlim 'Y _6978.6 mis

q—0

exceeds the velocity of torsional phonons

o= Azlim 29
q—0

=5585.3 m/s.

The ratio of the velocities is;=v/v,=0.800 35.

V. NUMERICAL METHOD OF FINDING NONLINEAR
SOLITARY WAVES

ERIC MACROMOLECULES 7069

60 80 140

A

60 100 140

140

60 80 120

FIG. 3. The profiles of the soliton of longitudinal compression
(components,,, ¢, h,, curves 1, 2, Bat velocitys=1.02 and the
soliton of torsion(curves 4, 5, Hat velocitys=0.82.

pose let us assume,(t)=r (&), en(t)=¢(£), and hy(t)

=h(§), where the wave variablg=nAz—uvt, v is the wave

velocity, and the functions ¢, andh smoothly depend o&.
Using the discrete approximations of time derivatives

Fa=—0(rhp1—Tn_1)/2AZ,

‘.Pn:U('vzln-%—l_5’//n_2'r/fn—1)/6AZ,

Fa=02(Fps1— 20+ 1)/AZ?,

The equations of motion that correspond to the Hamil-

tonian(2) have the form

. . J
MF,—M(Ry+r,) @2+ —P=0,
ar,
. o d
M(Ro+rn)2<pn+2M(R0+rn)<pnrn+£P=O, (10
n

J
——P=0,

2
MiZ+ o

where the potential energy

p:; {V(pn)+U(0n)+W(5n)}'

("Pn - Uz( Uny1— 150+ 15¢, 1 — l//n,z)/].%ZZ,

hn=—02(Wp,1— 15w, + 15W,_ 1 — Wp_,)/12A 7%,

where the relative rotational displacemept=¢,.1— ¢n
and the relative displacement,=h,,;—h,, we write the
equations of motiori10) as a system of discrete equations in

variablesr ., ¥, W,:

I:l,n: _Cl(rn+1_2rn+rnfl)+C2(‘//n+l_5‘/’n_2‘//n71)2

X(Ro+rn)+Fi(rn—3, .- Fnssithn_z, -« -2,

Wn-3, -« Wni2) =0,

The complexity of the equations of motion does not allow us F,,=C3( 11— 15¢n+ 15¢n_1— yn_2) + Ca(rnr1— 1)

to study them analytically, therefore for the analysis of soli-

ton solutions we will take advantage of a numerical method

[7].

The solution of Eqs(10) will be searched for as a travel-

ing solitary smooth wave of a constant profile. For this pur-

X(n+1=5¢n—2¢n-1)/(Ro+1n)

+Fo(rn_s, .. n-2;

. :rn+3;¢n731 t

Wp_3, ... ,Wn+2):O, (11)
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FIG. 5. Dependence of the energy(a), and widthD (b) of the
soliton of torsion on the dimensionless velocity

60 80 100 120 140 The solution of this problem allows us to find numerically all
n soliton solutiongsolitary waves of a constant profjleor the
equations of motior(10). The absence of such solutions at
FIG. 4. Change of length of the valence bongls, valence 5,y value ofy means the impossibility of soliton motion at
angled,, and conformational angle$, in the localization region of this value of velocity.
the SO'?“’” of compressio(‘curves 1, 2, Bat velocitys=1.02 and The problem(12) was solved numerically by the method
the soliton of torsior(curves 4, 5, fat s=0.82. of conjugate gradients. The solution was searched for in the
chains withN=400 bonds(the given valueN ensures the

Fan=C3(Wp+1— 15w, + 15w, —W,_5) independence of the shape of the solution of zero boundary
FF3(Tngs e Tneaitn g, oo, conditiong. The initial point of descent was taken in the
form of three symmetric bell-shaped profilgs), ¢(n), and
Wp-3, -« Wni2) =0, w(n) centered at the middle of the chain.

Each soliton solutiorfr ,,, ,Wnth_, is characterized by
where the coefficients,;=v?%/Az% c,=c1/36, c3=C1/12,  the energy
andc,=c,/6.
We search numerically for soliton  solutions N—1
{rn. . Wnth_, for discrete systems of Eq&L1) as solutions E=>

[ Mv?
of the problem for a conditional minimum, n=

[(rn+1_rn71)2+(RO+rn)2(¢n+ wnfl)z

2 | 8AZ?
1 N—1
F=~- E (Fin-i-an-l-F%n)—)min, +(Wn+Wn—1)2]+V(pn)+U(an)+w(5n) )
n=2 ’ ’ '
(12
M=rn= 1= dn=wy=wy=0. the total torsion

TABLE I. Dependence of the enerdy width D, total compressioR, torsionW, and amplitude#, , A,,
Ay, A; of the soliton of torsion on the dimensionless velodty

E D R v A A, A, As

s (kd/mo) (pm) (deg (pm) (pm) (deg (deg
0.8025 0.11 39.9 -1.2 -11.8 0.03 —-0.01 —0.006 0.32
0.8050 0.37 275 -1.9 -18.5 0.06 —-0.02 -0.017 0.72
0.8075 0.81 225 -2.6 —24.6 0.10 -0.03 —-0.033 1.16
0.8100 1.48 19.7 -33 -31.1 0.14 —-0.05 —0.052 1.65
0.8125 251 17.9 -43 —38.6 0.20 —-0.07 —0.080 221
0.8150 4.19 16.8 —-5.6 —48.4 0.28 —-0.10 -0.120 2.88
0.8175 7.47 16.3 -7.9 —64.0 0.38 —-0.13 -0.179 3.77

0.8200 28.61 21.0 -201 —144.8 0.63 -0.21 —0.325 5.70
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FIG. 7. Existence region for acoustic supersonic solitons of ten-

18
_ sion(a) and solitons of compression of th@nszigzag in the space

° of dimensionless parametegsands.

14

12 VI. DYNAMIC PROPERTIES OF SOLITONS

10

1 101 102 1.03 1.04 Numerical solution of the problenil2) has shown the
s existence of soliton solutions of two types. The first solution

describes the propagation of a torsional solitary wave along
the PTFE chain. The typical form of the solution is presented
in Fig. 3. The displacements of all three componeRtse,,,
andh,, have the form of a solitary wave. In combination they

FIG. 6. Dependence of the enerfy(a) and widthD (b) of the
soliton of compression on the dimensionless velosity

and the compression of the chain

N
R=E W, .
n=1

The mean-squared width of the soliton measured in the pe
riods of the chain is written as

N 1/2 EERT
D=2{21(HH)Wn/R} | e o __A(t.))

—

wheren:Er’}'zlnwn/R gives the position of the soliton cen- & 1
ter. The solution is also characterized by the amplitude of 2
transverse displacements of the bonds of the helix backbonis*
A,=max,r,, the amplitudes of the strain of valence bonds ' 503 '
A,=miny(p,—po), of the valence angles ;= min,(6,— 6p),
and of the angles of rotatioA ;= max,(5,— &)

SN

I'/j
/

@
8 g
=3

TABLE II. Dependence of the enerdy, width D, total com-
pressionR, torsion¥, and amplitude#\, , A,, A,, A, of the soli-
ton of longitudinal compression on the dimensionless velogity

E D R ¥ A A, A, A,
s (kd/mo) (pm) (deg (pm) (pm) (deg (deg

1.005 88 203 -44 78 06 -1.0 -16 -0.3
1.010 278 159 -66 114 13 -19 -33 -05
1.015 55,5 136 —-88 145 20 -28 -51 -0.7
1.020 97.2 12.2-110 174 28 -38 -7.2 -09
1025 1583 11.3-135 205 38 -48 -95 -11 FIG. 8. Collision of solitons of torsions=0.82) in the helix of

1.030 2524 10.8—-165 243 49 -59 -—-122 -13 PTFE. The dependence of transversal displaceme(d), relative

1.035 418.6 10.6-211 299 6.2 —-7.1 —-158 —-1.5 rotation,, (b), and relative longitudinal displacemeny, (c) on the

1.040 941.0 115-334 449 85 —-88 —218 —-1.7 number of the bondh and timet. The radiation of phonons with
respect to component,, can be seen.

—w_ (pm)

500
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FIG. 9. Inelastic collision of solitons of torsiors€ 1.02) in the FIG. 10. Collision of the soliton of torsionsE0.82) with the
helix of PTFE. The radiation of phonons with respect to componensolitons of longitudinal compressiors£ —1.01) in the helix of

i, can be seen. PTFE.

describe a localized torsion of the helix. In the region ofgrowth of the velocity, the soliton energy monotonically in-
localization of the soliton on the transverse compomernhe  creases and the width monotonically decreases up to the
helix is expanded, on the angular variakle monotonically ~minimum valueD=16.3 ats=0.818 and then begins to
twisted, and on the longitudinal directidnp, monotonically — grow monotonically. Concrete values of the eneEgywidth
squeezed. As is visible from Fig. 4, all these deformations oD, total compressiol®, torsion of the spirall’, amplitude of
the helix are achieved basically by the expense of local magransversal expansion of the cha@ip, and extreme values of
nification of the rotation angle§,,, i.e., by the expense of strains of valence bond&,, of valence angle#,, and of
squeezing dihedral angles of a chain. angles of rotatiorA; are presented in Table I. As follows
The second solution describes the propagation of a solifrom this table, the amplitude of longitudinal compression of
tary wave of longitudinal compression. The form of the so-the chain grows monotonically with the growth of velocity
lution is given in Fig. 3. The displacements of the threeand reaches the maximum valte23 pm at the maximum
components,,, ¢,, andh, also have the form of a solitary value of the velocity. The transversal expansion of the helix
wave, but in combination they describe a localized longitu-does not reach an essential value. At all values of the veloc-
dinal compression of the helix. In the region of localizationity the valence bonds and the angles are almost undeformed,
of the soliton on the transverse componeptthe helix is  as against the angles of rotation. The amplitude of deforma-
expanded, on the angular variakig slightly untwisted, and tion of torsion angles monotonically grows with growth of
on the longitudinal directioi, squeezed. From Fig. 4 it is velocity. The maximum deformation happens on the right
visible that these deformations are reached first of all at thend of the interval of velocities, where the total torsion of the
expense of squeezing the valence angles and valence bonéislix ¥ =—163.5°.
Thus the torsional angles are weakly deformed. The solitons of compression of the helix have an interval
The solitons of torsion have the finite interval of permis- of permissible values of dimensionless velocityz 4<1.04.
sible values of dimensionless velocity<s<0.820034, The dependencies of energyand widthD of the soliton on
where the dimensionless velocis=v/v,. The dependen- s are presented in Fig. 6. The energy of the soliton grows
cies of the energf and widthD of the soliton on the di- monotonically with growth of the velocity and the width
mensionless velocitys are presented in Fig. 5. With the monotonically decreases up to the minimum valle
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FIG. 12. The formation of the soliton of torsion, the soliton of

FIG. 11. The formation of the soliton of torsion and three WaVe|0ngitudina| (:On']pression7 and three wave packets in the helix mac-

packets in the helix macromolecule PTFE at compression of 40° ofomolecule PTFE at compression of 40° of the first valence angle
the first dihedral angle; the dependence of the valence afgles (time t=170 p3.

and angles of rotatio,, (b) on the number of bond for time t

=180 ps. where

=10.19 ats=1.035 and then begins to grow monotonically. d2

Concrete values of enerdy, width D, total compressiofR, K1=jV(P) =2D0a2
and torsion of the helixl, the amplitude of transverse ex- dp

. . . p=p
pansion of the chaii,, and extreme values of the strain of °

valence bond4,,, valence angled,, and angles of rotation js the stiffness of the valence bond and
A are presented in Table Il. The amplitude of longitudinal

compression of the chain grows monotonically with growth q2
of the velocity and reaches the maximal value 0.334 nm on K,=—U(6) =K, Sir? 6,
the right end of the interval of velocities. The amplitude of d6?

. . 0= 90
transverse expansion can reach the value 8.5 pm, which ex-

ceeds by more than one order of magnitude the maximuna1
value of expansion of the helix for a soliton of torsion. Large Numerical solution of the problertl2) has shown that

\t;aluocles Cac? als? beT;eaghhedd b3|/ thel str?kl]ns of the vzleréc&ly one type of acoustic soliton, namely, the soliton wave
onds and angies. ihe dinedral angles thus are weakly dgg longitudinal deformation, can exist in a plane zigzag

formed. So th_e tension of a torsion %ngle at the maximunyain “The type of soliton solution depends on the dimen-
value of veloglty does. not exceeq 1'7. ) . sional parameteB, which characterizes the relation of physi-
An analysis of.sohtor? dynamlcs in a plane zigzag I:)Ecal and geometrical anharmonicity of the zigzag chain. The
cha|_n was made ii16], n which the lower value of the physical anharmonicity is caused by the potential of the va-
maximum energy of strain of a valence anglg=130.122 o0 bond, and the geometrical anharmonicity by the poten-
kJ/mol[22] was used. It was shown that a soliton of tension..1 of the valence angle. At valuga<0.0356 the geometri-

with a narrow supersonic velocity spectrum can exist in thecal anharmonicity plays the main role by virtue of which the

trans zigzag cham_. It Is interesting 1o cons_lder the deloen'soliton solution of the equations of motion corresponds to a
dence of the solution on the value of the dimensionless p

as'olitary wave of tension in the plane zigzag. At>0.0356
rameter the physical anharmonicity will be greater, by virtue of
5 which the soliton solution already corresponds to a solitary
B=K3/K1pg, wave of compression.

e stiffness of the valence angle.
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The dependence of the interval of soliton velocities on thesional soliton. A soliton having velocity higher than the ve-
parameterg is presented in Fig. 7. I3<B;,=0.0356, the locity of the torsional phonons advanced the wave packet of
soliton is a solitary wave of tension, and wh@&»> B, a  torsional phonons.
solitary wave of compression. In chains wigh=0 (the ap- The compression of the first valence angle leads to the
proximation of an infinitely rigid valence boihdhe soliton formation of two supersonic solitoriBig. 12). The soliton of
has the velocity spectrum<ls<s;=1.095. With growth of compression moves with the greatest possible velosity
B, the maximum value of velocitg; decreases monotoni- =1.04 ahead of a wave packet of longitudinal supersonic
cally. At the threshold valuegs= B, full compensation of phonons. The soliton of torsion moves also with its greatest
geometrical and physical anharmonicity occurs and the vepossible velocitys=0.82, ahead of a wave packet of tor-
locity spectrum disappearssy(=1). Further growth of3  sional phonons.
leads to monotonic growth of the velocity spectrum. Modeling shows that the strain of the end of a spiral mac-

At the value of energyK ,=130.122 kJ/mol the dimen- romolecule can lead to the formation of two types of super-
sionless paramete3=0.01929<3,. The soliton corre- sonic soliton(torsional and longitudinal compression of the
sponds to a solitary wave of tension and has velocity spedaelix), having supersonic intervals of velocities. It confirms
trum 1<s<1.02. At the selected value of the enerlfy,  the results obtained by the numerical solution of the problem
=529 kJ/mol the dimensionless paramej@s0.078419 (12).
> By. The soliton corresponds to a solitary wave of compres-
sion and has velocity spectrum<ds<1.035. VIIl. CONCLUSIONS

VIl. NUMERICAL MODELING OF SOLITON DYNAMICS _ The examination of the nonlinear_ dynamics of PTFE car-
ried out allows us to conclude that in an isolated polymeric

Modeling of the dynamics of solitons in the chains PE andmacromolecule having the shape of a three-dimensional he-
PTFE has shown their stability at all permissible values oflix there can simultaneously exist two types of supersonic
velocity. The solitons move along a chain with a stationarysoliton: solitons of torsion and solitons of longitudinal com-
value of velocity and maintain their shape. pression of the spiral. The solitons of the first type corre-

The collision of solitons is not elastic and can be accom-spond to a solitary wave of rotary displacements, and soli-
panied by the radiation of phonons. The solitons of torsion otons of the second type to a solitary wave of longitudinal
spiral PTFE interact in practice as elastic particles. Theidisplacements of the bonds. Thus intertwisting of a spiral is
collision is accompanied by very weak radiation of longitu- mainly realized as the compression of the dihedral angles,
dinal phonons only near the maximum value of velodty and longitudinal compression by compression of the valence
=0.82(Fig. 8). The collision of the solitons of longitudinal angles and bonds. The solitons have finite supersonic inter-
compression in the spiral is accompanied by the radiation ofals of velocities: the soliton of torsion has velocity higher
torsional phonongFig. 9). The collision of the torsional soli- than long-wave phonons of torsion, and the soliton of com-
ton with solitons of compression happens almost without thepression a velocity higher than the velocities of long-wave
radiation of phonongFig. 10). longitudinal phonons.

In a finite chain, supersonic solitons can arise only on its In the plane zigzag macromolecule PE only one type of
ends. We model the formation of a soliton by strain of thesupersonic soliton, namely, the soliton of longitudinal com-
end of the chain. Let us consider the propagation of an initiapression of the chain, can exist. This allows us to conclude
excitation, given as deformation of the first bond, in the finitethat helicity of the polymeric macromolecule is a necessary
helix chain (N=10000) modeling the PTFE molecule. For condition for the existence in it of solitons of torsion caused
this purpose we integrate numerically the equations of moby anharmonicity of the potential of interaction.
tion (10) with initial strain corresponding to diminution of Both such supersonic solitons are dynamically stable at all
the first dihedral angle of the chain & =40° and with  possible values of the velocity and have particlelike proper-
strain compression of the first valence angledgf 40°. ties (inelasticity of their interaction is exhibited only at the

The strain of the first dihedral angle leads to formation inmaximal values of the velocijyLet us note that the study of
the helix of a torsional soliton, which propagates with thetorsional solitons in isolated helix chains has to be aug-
greatest possible velocitg=0.82 (Fig. 11). Three wave mented by investigation of them in a realistic nonlinear
packets are also formed in the chain. The first packet isnodel taking into account intermolecular interaction.
formed by optical phonons, the second by supersonic
phonons of torsion, and the third by longitudinal supersonic ACKNOWLEDGMENT
phonons. The wave packet of longitudinal supersonic
phonons moves faster than the soliton. As is visible from This work was supported by the Russian Foundation of
Fig. 11, the phonons do not affect the dynamics of the torBasic ResearckiGrant No. 98-03-33366a

[1] A. R. Bishop, J. A. Krumhansl, and S. E. Trullinger, Physica D [5] S. Yomosa, Phys. Rev. B2, 1752(1985.

1, 1 (1980. [6] P. Perez and N. Theodorakopoulos, Phys. Lettl &, 405
[2] A. Collins, Adv. Chem. Phys53, 225(1983. (1986.
[3] A. S. Davydov,Solitons in Molecular System&eidel, Dor- [7] P. L. Christiansen, A. V. Zolotaryuk, and A. V. Savin, Phys.
drecht, 198% Rev. E56, 877 (1997).

[4] A. C. Scott, Phys. Re217, 1 (1992. [8] E. Fermi, J. Pasta, and S. Ula@pllected Works of Enrico



PRE 61 SOLITONS IN SPIRAL POLYMERIC MACROMOLECULES 7075

Fermi (University of Chicago Press, Chicago, 196%ol. I, [16] L. I. Manevitch and A. V. Savin, Phys. Rev. &5 4713
p. 978. (1997.

[9] N. J. Zabusky and M. D. Kruskal, Phys. Rev. Letb, 241 [17] A. V. Savin and L. I. Manevitch, Phys. Rev. B8, 11 386
(1965. (1998.

[10] N. J. Zabusky, Comput. Phys. Commui.1 (1973. [18] F. Zhang, Phys. Rev. B6, 6077(1997).

[11] M. Toda, Phys. Repl8, 1 (1975. [19] F. Zhang, Phys. Rev. B9, 792(1999.

[12] O. H. Olsen, P. S. Lomdahl, and W. C. Kerr, Phys. Lett. A [20] M. Kimming, G. Strobl, and B. Stuhn, Macromoleculgg,
136, 402(1989. 2481(1994).

[13] P. S. Lomdahl, O. H. Olsen, and M. R. Samuelsen, Phys. Lettr>1) g wunderlich, Macromolecular PhysicgAcademic Press,
A 152, 343(199)). New York, 1973, Vol. 1.

[14] N. I. Pahomova, L. I. Manevitch, V. V. Smirnov, and S. V.
Riapusov, Sov. J. Chem. Phy&.918(1991).

[15] L. I. Manevitch, L. S. Zarkhin, and N. S. Enikolopyan, J. Appl.
Polym. Sci.39, 2245(1990.

[22] B. G. Sumpter, D. W. Noid, G. L. Liang, and B. Wunderlich,
Adv. Polym. Sci.116, 29 (1994.
[23] J. G. Kirkwood, J. Chem. Phyg, 506 (1939.



